Impact of Importing Feed on the Farm Nutrient Balance

John A. Lory, Ph.D.
University of Missouri Extension

Inputs

Outputs

<u>Inputs</u> <u>Outputs</u>

Your Farm

Outputs

Inputs

Your Farm

BALANCE +

Nutrient Accumulation

Inputs

Outputs

Your Farm

BALANCE -

Nutrient Depletion

Farm Nutrient Balance

Inputs

Outputs

Farm Nutrient Balance

Inputs

Managed

- Purchased feed*
 - Concentrates
 - Bought hay
 - Silage
- Fertilizer
 - N fixation by legumes
 - Purchased fertilizer
- Bought calves and cows

Outputs

Managed

- Milk*
- Sold calves and cows

Un-Managed

N loss from manure*

Farm Nutrient Balance

What is the Impact?

Example Grazing Dairy -36

- 1 cow/acre
- Milk Production ~12,000 lbs/cow/yr
- Feed Profile
 - % Imported DM 36%
 - Concentrate 1.5 T/cow/yr
 - Bought Alfalfa 0.84 T/cow/yr

Inputs

Outputs

lb/cow

$$N = 120$$

$$P = 17$$

$$K = 68$$

BALANCE: GD36

$$N = -123$$

$$P = +5$$

$$K = +50$$

$$N = 243$$

$$P = 12$$

$$K = 18$$

Units: lb/cow

Inputs

Concentrate (1.5 T/cow/yr)

N = 64.4 lb/cow

P = 11.8 lb/cow

K = 25.8 lb/cow

Alfalfa (0.8 T/cow/yr)

N = 56.1 lb/cow

P = 5.1 lb/cow

K = 42.3 lb/cow

Outputs

Managed

Milk (12,000 lb)

N = 62.2 lb/cow

P = 12.1 lb/cow

K = 18.2 lb/cow

Un-Managed

N loss from manure

N = 181 lb/cow

Example Grazing Dairy -51

- 0.75 cow/acre
- Milk Production ~12,000 lbs/cow/yr
- Feed Profile
 - % Imported DM 51%
 - Concentrate 1.5 T/cow/yr
 - Bought Alfalfa 1.2 T/cow/yr
 - Bought Hay 0.6 T/cow/yr

Example Grazing Dairy -0

- 1.4 cow/acre
- Milk Production ~9,000 lbs/cow/yr
- Feed Profile
 - − % Imported DM − 0%
 - Concentrate 0 T/cow/yr
 - Bought Alfalfa 0 T/cow/yr
 - Bought Hay = 0 T/cow/yr

Impact of Imported Feed on Farm Nutrient Balance

GD0 BALANCE

$$N = -227$$

$$P = -9$$

$$K = -14$$

GD36 BALANCE

$$N = -123$$

$$P = +5$$

$$K = +50$$

GD51 BALANCE

$$N = -75$$

$$P = +10$$

$$K = +90$$

Units: Ib/cow

Impact of Imported Feed on Farm Nutrient Balance

GD0 BALANCE

$$N = -227$$

$$P = -9$$

$$K = -14$$

Feed
Fertilizer Value
0

GD36 BALANCE

$$N = -123$$

$$P = +5$$

$$K = +50$$

Feed
Fertilizer Value
~\$85

GD51 BALANCE

$$N = -75$$

$$P = +10$$

$$K = +90$$

Feed Fertilizer Value ~\$130

Units: Ib/cow, \$/cow

Conclusions:

- Imported feed = fertilizer for your farm.
- Farms with imported feed are typically phosphorus and potassium neutral or surplus... on average.

Nutrient Balance: Within the Farm

Where do the nutrients go?

Where do the nutrients go?

Milk Tank

Laneways

Paddocks

Loading the Laneways:

100 cows 0.5 miles laneway 164 lbs P/A

100 cows 1.0 mile laneway 82 lbs P/A

Assume 20-ft wide laneway

Conclusions:

- Imported feed = fertilizer for your farm.
- Your farm is a patchwork of nutrient surplus and nutrient deficit paddocks.
- Nutrient balance calculations help you understand where fertilizer is needed on your farm.

Supplemental Information

Example Grazing Dairy -51

- 0.75 cow/acre
- Milk Production ~12,000 lbs/cow/yr
- Feed Profile
 - % Imported DM 51%
 - Concentrate 1.5 T/cow/yr
 - Bought Alfalfa 1.2 T/cow/yr
 - Bought Hay 0.6 T/cow/yr

Inputs

Outputs

lb/cow

N = 164

P = 22

K = 108

BALANCE: GD51

N = -75

P = +10

K = +90

N = 239

P = 12

K = 18

Nutrient Balance Concept Inputs Outputs

Concentrate (1.5 T/cow/yr) Managed

N = 64.4 lb/cow

P = 11.8 lb/cow

K = 25.8 lb/cow

Alfalfa (1.2 T/cow/yr)

N = 77.0 lb/cow

P = 6.6 lb/cow

K = 57.9 lb/cow

Bought Hay (0.6 T/cow/A)

N = 23.0 lb/cow

P = 2.9 lb/cow

K = 24.2 lb/cow

Milk

N = 62.2 lb/cow

P = 12.1 lb/cow

K = 18.2 lb/cow

Un-Managed

N loss from manure*

N = 177 lb/cow

Example Grazing Dairy -0

- 1.4 cow/acre
- Milk Production ~9,000 lbs/cow/yr
- Feed Profile
 - − % Imported DM − 0%
 - Concentrate 0 T/cow/yr
 - Bought Alfalfa 0 T/cow/yr
 - Bought Hay 0 T/cow/yr

Inputs

Outputs

lb/cow

$$N = 0$$

$$P = 0$$

$$K = 0$$

BALANCE: GD0

$$N = -227$$

$$P = -9$$

$$K = -14$$

lb/cow

$$N = 227$$

$$P = 9$$

$$K = 14$$

Nutrient Balance Concept Inputs Outputs

- Concentrate (1.5 T/cow/yr) Managed
 - N = 0 lb/cow
 - P = 0 lb/cow
 - K = 0 lb/cow
- Alfalfa (1.2 T/cow/yr)
 - N = 0 lb/cow
 - P = 0 lb/cow
 - K = 0 lb/cow
- Bought Hay (0.6 T/cow/A)
 - N = 0 lb/cow
 - P = 0 lb/cow
 - K = 0 lb/cow

- Milk
 - N = 46.3 lb/cow
 - P = 9.0 lb/cow
 - K = 13.6 lb/cow

Un-Managed

- N loss from manure*
 - N = 181 lb/cow

